GUILHERME HENRIQUE MARTINS DE OLIVEIRA
LUAN GUSTAVO DE BRITO

CONSTRUQ{&O DE FERRAMENTA PARA O
ENSINO PRATICO DE APRENDIZADO POR
REFORCO EM ROBO MANIPULADOR

Sao Paulo
2022



GUILHERME HENRIQUE MARTINS DE OLIVEIRA
LUAN GUSTAVO DE BRITO

CONSTRUQ{&O DE FERRAMENTA PARA O
ENSINO PRATICO DE APRENDIZADO POR
REFORCO EM ROBO MANIPULADOR

Trabalho apresentado a Escola Politécnica
da Universidade de Sao Paulo para obten-

¢ao do Titulo de Engenheiro Mecatronico.

Sao Paulo
2022



GUILHERME HENRIQUE MARTINS DE OLIVEIRA
LUAN GUSTAVO DE BRITO

CONSTRUQ{&O DE FERRAMENTA PARA O
ENSINO PRATICO DE APRENDIZADO POR
REFORCO EM ROBO MANIPULADOR

Trabalho apresentado a Escola Politécnica
da Universidade de Sao Paulo para obten-

¢ao do Titulo de Engenheiro Mecatronico.

Orientador:

Larissa Driemeier

Co-orientador:

Thiago de Castro Martins

Sao Paulo
2022



AGRADECIMENTOS

Agradecemos imensamente a toda a comunidade desenvolvedora de software livre, este
trabalho s6 foi possivel gracas ao trabalho deles.



RESUMO

A aplicacao de Aprendizado por Refor¢o na robdtica representa a evolucao natural
na programacao e controle de robés manipuladores. O emprego desta e outras técnicas
de aprendizado de maquina permitiram que os robos se tornassem capazes de se adaptar
a situagoes imprevistas encontradas em seus ambientes. Devido a sua importancia e ao
potencial de desenvolvimento da area, o entendimento e a capacidade de desenvolver so-
lugbes no campo de aprendizado por refor¢o devem fazer parte do curriculo do engenheiro
moderno que deseja trabalhar com robética. Este trabalho propoe o desenvolvimento de
uma ferramenta didatica para facilitar o ensino de técnicas de aprendizado por reforco
na roboética. A ferramenta conta com um ambiente de simula¢ao contendo um modelo
do rob6 KUKA KR-16 e um modelo de cAmera com visao computacional. Como teste
é implementado o algoritmo DQN para tentar fazer com que o robo capture uma bola
arremessada dentro de uma cesta acoplada ao seu punho.

Palavras-Chave — Aprendizado por Reforco, DQN, Robd Manipulador, MuJoCo, Simu-
lagao.



ABSTRACT

The application of Reinforcement Learning in robotics represents the natural evolution
in the programming and control of robots manipulator. The use of this and other machine
learning techniques allowed robots to become capable of adapting to unforeseen situations
found in their environments. Due to its importance and the development potential of the
area, being able to understand and having the ability to develop solutions in the field of
reinforcement learning should be part of the curriculum of the modern engineer who wants
to work with robotics. This work proposes the development of a didactic tool to facilitate
the teaching of reinforcement learning techniques in robotics. The tool has a simulation
environment containing a model of the KUKA KR-16 robot and a camera model with
computer vision. As a test, the DQN algorithm is implemented to try to make the robot
capture a ball thrown into a basket attached to its fist.

Keywords — Reinforcement Learning, DQN, Robot Manipulator , MuJoCo, Simulation.



LISTA DE FIGURAS

[l Representacao de modelo de Aprendizado por Refor¢o (KAELBLING, 1996) 20
2 Algoritmo Q-Learning (SUTTON, 2017). . . . . . . . ... ... ... ... 23
3 Modelo de utilizagao do DQN (Lang et al. 2020) . . . .. ... ... ... 25
4 Representacao de modelo da cadeia cinematica do KUKA KR-16 segundo |

DI (PIOTROWSKI N; BARYLSKI A, 2004)] . . .« o o vooo oot 27
(5 Notacao de Denavit-Hartenberg (CRAIG, 2012) . . . . . . ... ... ... 28
{6 Posicionamento dos orificios de fixa¢ao do rob6. (KUKA KR16 Specification)| 32
[7 Cesta modelada em 3D. (Fonte: Autores)[. . . . . ... .. ... ... ... 33
[ Representacao da cesta no ambiente virtual.(Fonte: Autores) . . . . . . . . 34
[0  KUKA KR16-2 instalado na Escola Politécnica da USP (Fonte: Autores)| . 35
(L0 Dimensoes principais e envelope de trabalho. (KUKA KR16 Specification |

-adaptacao) | ... 36
(11 Modelos 3D encontrados.(Fonte: Autores)| . . . .. ... ... ... .... 37
(12 Eixos de rotagao e dire¢oes de rotacao no movimento do robo. (KUKA |

KR16 Specification - adaptacao) | . . . . . . . .. ... ... ... 38
(13 Comportamento do atuador(Fonte: Autores) . . . . . ... ... ... ... 40
(I4  Planta baixa da sala, com a disposi¢ao final dos elementos. (Fonte: Autores)| 42
(15  Modelagem 3D das mesas(Fonte: Autores)| . . . . . ... ... ... .... 43
(16  Renderizagao 3D do ambiente de simulagao(Fonte: Autores) . . . ... .. 43
(L7 Visao da camera simulada.(Fonte: Autores) . . ... ... ... ... ... 44
(I8 Campo de visao da camera.(Fonte: Autores) . . . . . ... ... ... ... 45
(19  Aplicacao do filtro de cor.(Fonte: Autores)| . . . . . . ... ... ... ... 47
20 Exemplos dos demais filtros aplicados.(OpenCV Docs)| . . . . . ... . .. 47
21  Projegao dos pontos no espaco.(Fonte: Autores)| . . . . . .. .. ... ... 49




[22  Rastreamento da bola, com obstaculo no campo de visao.(Fonte: Autores) 53

[23  Fungao Penalidade continua.(Fonte: Autores)| . . . . . ... ... ... .. 57

[24  Janela de visualizagao do treinamento. (Fonte: Autores)| . . ... ... .. 64

[25  Plotagem ao vivo das recompensas terminais. (Fonte: Autores). . . . . . . 65




LISTA DE TABELAS

(1

Parametros de Denavit-Hartenberg do robo KUKA KR-16|. . . . . . . ..

[2

Limites cinematicos do rob6(KUKA KR16 Specification - adaptagao) | . . .




SUMARIO

[Parte I: INTRODUGCAOQ| 11
(1 Introducao| 12
(1.1 ~ Contextualizacao e Apresentacao do Tema| . . . . . . . ... ... .. ... 12
(1.2 Objetivos| . . . . . . . . . 13
(1.3  Importancia e Justificativa do Projetol. . . . . . . . ... ... ..o 14
[Parte IT: PESQUISA| 15
2_Estado da Artel 16
[2.1 ~Aprendizado por reforcol . . . . . . ... ..o 16
[2.2  Aprendizado por reforco profundo| . . . . . . . ... 17
3__Fundamentos Teoéricos| 19
[3.1 Aprendizado por reforco| . . . . . ... ... 19
[3.1.1  Processo de Decisao de Markovl . . . . .. ... ... ... ... .. 20

[3.1.2  Politica de Acoes| . . . . . . . . . ... 20

(3.1.3  Value Iterationl . . . . .. ... ... 22

[3.1.4  Q-Learningl . . . . . . . ... 22

[3.1.5  "Exploration” contra "Exploitation” |. . . . . ... ... ... .. 23

[3.1.6  €-Greedy| . . . . . . . . ... 23

[3.2  Deep Q-Learning| . . . . . .. ... ... 24
[3.2.1 Memoria de experiéncias e treinamento em mini-lotes| . . . . . . . . 25

322 Rede Alval . . . . . . . . 26




Parte 111: DETALHAMENTO DE PROJETO

|4

Requisitos de Projetol

[4.1 Requisitos| . . . . . .. ... ... ... ..

[4.2.1 Fixacaol . . .. .. ... ... ...

(7

Modelo de Aprendizado por Reforco|

7.1 Espaco de Estados| . . . . ... ... ...

31

31

31

32

32

33

35

35

35

37

38

39

41

44

46

46

47

49

50

54



(7.2  Espaco de Acoes| . . .

[7.3 Funcao de transicao de estados| . . . . . . . . ... ... ... ...

Parte 1V: RESULTADOS

8 A ferramental
(8.1 Parametrizacaol . . . .
8.2 Execucaol . . ... ..
(8.3 Visualizacaol . . . . . .
(8.4 Orientacao a Objetos| .

[9 Solucoes Desenvolvidas|

[Parte V: CONCLUSOQES|

[Referéncias Bibliograficas|

[Parte VI: APENDICES|

9.1 Desenho técnico da cestal . . . . . . . ..

[9.2  Repositorio no GitHub|

61

61

63

64

65

66

67

69

72



PARTE 1

INTRODUCAO



12

1 INTRODUCAO

1.1 Contextualizacao e Apresentacao do Tema

A roboética é um campo do conhecimento que saiu das paginas da ficcao cientifica e se
tornou realidade no ambiente industrial. Os rob6s em suas mais diferentes formas estao
presentes em industrias, laboratorios e universidades ao redor do mundo. A insercao da
robdtica em uma escala cada vez maior com o passar dos anos levou a necessidade de
refinamento e melhora das técnicas empregadas neste campo, seja para sensoriamento,

atuagao ou controle dos robos.

O avango da robotica no campo industrial possibilitou o surgimento de novas tecnolo-
gias e facilitou a padronizacao de pecas e a produgao em massa. A robdtica é amplamente
empregada desde a producao de alimentos até a producao de veiculos. A sua maior inser-
¢ao substituiu a mao-de-obra em tarefas que podem ser consideradas perigosas, garantindo
maior seguranca ao trabalhador. Além de sua utilizacao na producao industrial os robos
podem ser encontrados em ambientes domésticos, educacionais e hospitalares, sendo uti-
lizados para realizacao de tarefas e até mesmo como forma de entretenimento. Devido
a sua grande importancia e em conjunto com a evolucao tecnolégica que permitiu o de-
senvolvimento de hardware e software mais sofisticados, novas técnicas de controle foram

desenvolvidas utilizando elementos de Inteligéncia Artificial e Aprendizado de Maquina.

O controle baseado em Aprendizado por Refor¢o (AR) garante ao rob6 maior flexi-
bilidade e variabilidade de comportamentos, pois a utilizacao destas técnicas permite ao
robd aprender a realizar agoes sem a necessidade de que estas sejam programadas an-
teriormente. Como explica Kormushev et al.| [2013]| o aprendizado acontece através de
iterativas interagoes com o ambiente, utilizando uma funcao de recompensa como uma
métrica de valor para um estado, de forma a recompensar ou punir o robé com base no

resultado da agao e como ela é comparada a agao desejada

A utilizacao das técnicas de AR, apesar de inovadora, ainda encontra desafios na

aplicacao em problemas no mundo real, fora dos ambientes de simulagao. De modo a



13

atingir um modelo que seja capaz de ser treinado e validado em um tempo que seja
préatico e viavel, algumas simplificagdes devem ser implementadas, includindo muitas vezes
a necessidade de se fornecer demonstragoes de exemplo. A utilizacao de Aprendizado por
Reforgo Profundo (ARP) garante maior robustez ao modelo, pois permite que politicas
utilizadas no algoritmo de AR sejam aprendidas sem a necessidade de demonstracoes

fornecidas pelo usuério.

Aprendizado por Refor¢o Profundo combina as técnicas de Aprendizado Profundo,
nomeadamente, redes neurais artificiais profundas para analise e processamento de dados
com a utilizagao de algoritmos de AR para o aprendizado do rob6. A utilizagao das duas
técnicas combinadas funciona bem para tarefas de rob6s manipuladores, pois o processa-
mento de dados com Aprendizado Profundo permite que o algoritmo de AR seja capaz de
utilizar dados nao estruturados, sem a necessidade de tratamento anterior ou simplificagao

do modelo.

1.2 Objetivos

O objetivo deste projeto consiste em desenvolver uma ferramenta didatica de modo a
facilitar a aprendizagem ativa do tema aprendizado por reforco para alunos de engenharia

da escola politécnica.

A fim de criar um desafio lidico e se aproveitar da estrutura ja existente na Escola
Politécnica da USP, propoe-se o seguinte projeto: Controlar o rob6 industrial KUKA
KR16-2 instalado no Departamento de Engenharia Mecatronica com o uso de aprendizado
por refor¢o profundo, fazendo-o capturar uma bola de ténis lancada em sua direcao.
A deteccao dos objetos sera feita através da utilizacdo de uma camera Intel RealSense
D435, valendo-se de algoritmos de visao computacional implementados neste projeto. O
treinamento seréd feito em ambiente virtual com a utilizagao do software MuJoCo, com

uma reprodugao simplificada da sala onde o Rob6 manipulador se encontra.

Pretende-se, futuramente, utilizar as ferramentas aqui desenvolvidas no curso de gra-
duacao em engenharia mecatronica da Escola Politécnica da USP para demonstrar aos
estudantes o desenvolvimento pratico de controle por aprendizado por refor¢o profundo,
de modo que os futuros engenheiros possam estudar as técnicas empregadas no processo

e tenham como visualizar e modificar a implementacao.



14

1.3 Importancia e Justificativa do Projeto

O emprego de algoritmos de AR para o controle de movimento de rob6s manipuladores
¢ vantajoso em relagao a aplicagao de técnicas de controle baseadas na programacao de
trajetorias, pois permite que o robd seja capaz de executar tarefas em que pré-programar
sua trajetoria nao é possivel ou nao é viavel, isso se torna evidente em aplicacoes as
quais exigem correcoes em tempo real. O controle por AR pode ser usado, inclusive,
em situagoes novas, de modo que o robo seja capaz de aprender como realizar uma ag¢ao

lidando com valores de parametros anteriormente desconhecidos |[Kormushev et al.[[2013]

Estas técnicas permitiram uma grande disrupc¢ao na robotica, de modo que robos
puderam ser inseridos em ambientes anteriormente desconhecidos e ainda sendo capazes
de explora-los. Do ponto de vista de robds manipuladores em ambientes industriais, como
o KUKA, as técnicas de AR podem ser usadas para permitir aos robos maior liberdade
na execucgao de tarefas, pois podem usar dados fornecidos por sensores como cameras com
visao computacional e, com base em algoritmos de AR, aprender a lidar com perturbagoes
no ambiente ou com a presenca de elementos nao considerados na programacao elaborada
a priori, como pessoas e obstaculos. Essas caracteristicas garantem maior versatilidade

no emprego destes robos.

Além disso, dada a crescente aplicacao de AR a roboética na industria e em produtos
finais, é imprescindivel que um engenheiro mecatronico formado atualmente tenha famili-
aridade com as técnicas mais modernas de controle robético e planejamento de trajetoria.
Dessa forma, a importancia deste projeto se torna inequivoca ao criar a oportunidade
de mais uma forma de aprendizagem ativa na graduacao em engenharia mecatronica da
USP, permitindo que as futuras geragoes se formem ainda mais capacitadas a lidar com

desafios reais.



PARTE II

PESQUISA



16

2 ESTADO DA ARTE

Os robds foram revolucionarios na construgao do mundo moderno. Seu surgimento
gerou mudangas profundas em plantas industriais pelo mundo todo, entretanto o ambiente
com o qual o robd fosse interagir necessitava de uma preparacao para que tudo estivesse
no devido lugar, sendo o comportamento do rob6 programado previamente. Esse tipo de
solugao tem pouca capacidade de reagir a perturbagoes que possam surgir durante os ciclos
de atuagao do robo6. Segundo [Zhu et al.| [2021], com a evolucao dos algoritmos e recursos
computacionais, fez-se possivel a utilizagao de sistemas de controle com realimentacao
nas instalagoes com robos, obtendo-se a precisao necesséaria para o uso industrial em
larga escala. Segundo [Zamalloa et al.| [2017], a robotica encontra-se na geracao 4 de
sua evolugao, marcada pelo uso de algoritmos de aprendizado de maquina e inteligéncia
artificial no controle e tomada de decisao dos robos. Especialmente, o uso de Aprendizado

por reforco na otimizacao e planejamento de rota dos robés, em tempo real.

2.1 Aprendizado por reforco

Observando os trabalhos de |Lillicrap et al. [2015] (apresenta um modelo de AR capaz
de resolver 20 problemas fisicos, incluindo equilibrio de péndulo invertido, caminhada bi-
pede e quadripede 2D) e Mankowitz et al.|[2019] (apresenta um modelos de AR treinados
em ambiente propositalmente diferentes do ambiente final, sendo que o modelo é capaz de
lidar com as duas situagoes) torna-se evidente que técnicas de aprendizado de méaquina
tém maior robustez, ou seja, capacidade de lidar com perturbacgoes e varigoes no sistema
real, que seus analogos feitos puramente com empenho humano e rotas e pré-definidas.
Tendo isso em vista, ¢ natural que tais técnicas sejam as mais utilizadas atualmente para
determinacao de rota e controle de rob6s nas mais diversas aplicacoes. Vale ressaltar que
a abrangéncia de seu uso é prova da capacidade de generalizagao e robustez do modelo
de aprendizagem por reforco. Sendo alguns deles: aprendizado de caminhada bipede,
em [Kormushev et al.| [2013], ou quadripede, em |Shen et al. [2012], movimentos finos em

mao robotica humanoide em [Andrychowicz et al., OpenAl et al.|[2019], rob6 manipulador



17

rebatendo uma bola com taco de baseball em Peters and Schaal| [2008], encaixe de pegas

em planta industrial de montagem em |Luo et al.|[2021].

Entretanto, a alta capacidade de generalizacao do aprendizado por refor¢co vem com
um custo alto, o nimero de tentativas que rob6 tem que fazer durante um treinamento
é grande, da ordem de pelo menos centenas de rodadas, assim como mostrado em Kor-
mushev et al.[[2013]. E importante perceber também que apesar de avancos estarem sendo
feitos na dire¢ao de treinamento no mundo real, como em |[Mahmood et al.| [2018|, existem
intmeros beneficios em utilizar um ambiente virtual de treinamento, sendo a opgao mais
comum atualmente. Além disso, diversos trabalhos demonstram que é possivel fazer a
transicao do ambiente simulado para o mundo real de forma bastante acurada, como em
Hundt et al. [2020], Peng et al|[2017], Schwab et al., Hu et al. [2021], Christiano et al.
[2016], |Zhu et al.| [2021].

2.2 Aprendizado por reforco profundo

Com o acesso a placas graficas mais potentes e a imensos bancos de dados para trei-
namento, as redes neurais convolucionais (RNC) revolucionaram o mundo da inteligencia
artificial. Com sua capacidade incrivel de generalizacao se tornou a forma mais utilizada
de se fazer reconhecimento e classificacao de imagens. Da mesma forma, as RNCs criaram
um novo marco no mundo do aprendizado por reforco: o surgimento do Aprendizado por
Reforgo Profundo (ARP). A primeira vez que o ARP apareceu como grande revolugao foi
em 2013 no trabalho Mnih et al., unindo o reconhecimento de imagens poderoso das RNCs
com a interacao com o ambiente trazida do aprendizado por reforco, o modelo criado foi

capaz de aprender a jogar 7 jogos diferentes de Atari.

Um ponto crucial no desenvolvimento do ARP foi a nao utilizagao de camadas de
pooling nas Redes que se combinam com o aprendizado por reforco. Isso é importante
pois as camadas de pooling subtraem a informacao do posicionamento do elemento das
proximas camadas, recurso util na generalizacao para reconhecimento de imagens, mas
infeliz quando a disposigao dos elementos na imagem importa. Dessa forma, faz-se possivel
treinar o algoritmo de AR sem a necessidade de simulagao grafica, utilizando coordenadas
absolutas, que serao alimentadas para o algoritmo posteriormente pela rede neural, como

feito nos trabalhos de Andrychowicz et al. OpenAl et al.|[2019].

O uso de aprendizado por refor¢o profundo na robética tém sido cada vez mais co-

mum, possibilitando aprendizado simultaneo de visao e trajetoria, como em Schwab et al.|



18

Kalashnikov et al. [2018], ou ainda, como apresentado por|Vecerik et al.|[2020],|Jeong et al.|

12020] o uso de aprendizado auto-supervisionado. Com isso é possivel fazer ainda mais

com menos esfor¢o do desenvolvedor, por isso usos de ARP tem sido tao frequentes.



19

3 FUNDAMENTOS TEORICOS

Nesta secao sao apresentados os principais fundamentos tedricos por tras das técnicas
aplicadas no desenvolvimento deste trabalho. Sao discutidas a teoria geral por tras do
Aprendizado por Reforgo e a explicagao dos algoritmos utilizados, além de outros aspectos

cuja aplicacao se mostrou presente.

Em seguida, na secao sobre cinematica de manipuladores é apresentada a teoria ba-
sica de cinemética, incluindo a introducao sobre os parametros de Denavit-Hartenberg,
a derivacao das matrizes de transformacao de coordenadas do robo e a apresentagao do
modelo cinemético do KUKA KR-16.

3.1 Aprendizado por reforco

O Aprendizado por refor¢co é um algoritmo de aprendizado de maquina que busca
modelar o processo de aprendizado humano através da interacao com o ambiente. Em
diversas ocasioes o ser humano aprende sem a orientacao de um mentor ou referéncias
externas, o processo ocorre conforme a pessoa interage com o ambiente ao seu redor e

reage aos efeitos de suas agoes em um processo de tentativa e erro.

As técnicas de Aprendizado por Refor¢o buscam imitar esse tipo de comportamento
utilizando um sistema de recompensa para estimular as agoes desejadas e punir os com-
portamentos indesejados. Os componentes que fazem parte de AR sao: O ambiente, sobre
o qual serao realizadas as agoes;as agoes em si; o agente, que é o responsavel por realizar
as acoes e aprender o comportamento desejado; a recompensa, uma funcao que estimula

o comportamento do agente de modo a realizar o aprendizado.

A Figura [I] representa o modelo bésico de Aprendizado de Refor¢o. Na imagem, a
acao a ¢é realizada pelo agente B sobre o ambiente T. s é a representacao do estado do
sistema, que é utilizado pelo agente através de duas funcgoes: i, que representa a percepc¢ao

do estado do sistema pelo agente e r, que representa a recompensa associada ao estado e



20

a acao que foi tomada.

Figura 1: Representagao de modelo de Aprendizado por Refor¢o (KAELBLING, 1996)

3.1.1 Processo de Decisao de Markov

O problema desenvolvido pode ser caracterizado como um modelo de recompensa
adiada, Delayed Reward. Problemas deste tipo levam em consideragao a otimizagao a
longo prazo, ou seja, a recompensa considera também os estados e agoes futuras tomadas
pelo agente. Essa classe de problemas pode ser modelada como um processo de decisao
de Markov.

Um processo de decisao de Markov consiste de um espaco de estados &, um espaco de
acoes A, uma funcao de recompensa R : SXA—R e uma funcao de transicao de estados
T : SXA-II(S). A fungdo T denota a probabilidade de se chegar ao estado s’ tomando
a acao a no estado s. Como o problema desenvolvido é deterministico, ao tomar a agao
a no estado s, o mesmo estado s’ é alcangado, a fungao de recompensa torna-se fungao

somente do estado atual e da agao tomada, o que simplifica a convergéncia do algoritmo.

3.1.2 Politica de Acoes

Em um modelo de Aprendizado por Reforco, a Politica de A¢oes denota uma funcao
que associa a acao a ser tomada em funcao do estado do sistema de modo a optimizar

o comportamento do agente. Existem diferentes modos de optimizar o comportamento



21

do agente, levando em consideracao as possiveis agoes a serem tomadas. Existem trés

modelos que sao normalmente utilizados em trabalhos na drea de AR:

E(Z rt) (3.1)

t=0
E(> 4'r) (3.2)
t=0
1 h
: t
Jim B(- ;7 ) (33)

O primeiro modelo é chamado finite horizon model é o mais simples de ser analisado.
Neste modelo o valor esperado da soma das recompensas até um instante de tempo T é

a funcao a ser otimizada.

O segundo modelo, infinite horizon model, implementa um fator v, que considera as
futuras agoes a serem tomadas. As agOes futuras sao submetidas a um fator gama cujo

valor varia entre zero e um, de modo que sua influéncia sofre um desconto.

O ultimo modelo de otimizacao é average-reward model, que considera a média do
valor esperado da soma das recompensas, desta forma o agente nao precisa levar em conta

o comportamento futuro.

Utilizando o modelo infinite-horizon discounted model podemos estabelecer técnicas
para encontrar a politica de ac¢odes 6tima. Inicialmente definimos a funcao valor dos
estados V. Esta funcao associa um valor a um estado a partir do valor esperado da soma
das recompensas associadas ao estado atual s e assumindo que o agente segue uma politica

de agoes .

V*(s) = m(mﬂE(Z vory) (3.4)

A otimizacao desta funcao pode ser feita de maneira recursiva utilizando-se a fungao
recompensa e a funcao de transicao dos estados. A patir da funcao otimizada, podemos

definir a politica 6tima.

V*(s) = maz,(R(s,a) + 7Y V*(s)),Vs€S (3.5)

s'eS



22

7*(s) = argmaz,(R(s,a) + ’yz V*(s") (3.6)
s'eS
Uma outra funcao pode ser definida para encontrar a politica 6tima, utilizando o
estado atual uma politica 7 e a acao tomada pelo agente a. Trata-se da Funcao Valor das
Acoes Q.

o0

Qn(s,a) = Ex()_2're) (3.7)

t=0
3.1.3 Value Iteration

Da secao anterior pode-se concluir que o problema de encontrar a politica 6tima
pode ser definido como um problema iterativo utilizando o valor da funcao estado V
ou da funcao valor das agoes (). Em algoritmos desta categoria, os valores de Q ou V
sao iniciados arbitrariamente e, entao, através da iteracao sobre os valores de estados e
acoes sao encontradas as funcoes que maximizam V ou Q e, a partir destas, encontra-se

a politica 6tima 7*

3.1.4 Q-Learning

Um dos exemplos de algoritmos do tipo Value Iteraction é o Q-Learning. O Q-
Learning foi desenvolvido em 1989 por Watkins. O funcionamento do algoritmo pode ser
descrito da seguinte forma: inicializa-se Q para todos os possiveis valores de estados e
acoes e define-se o valor de (Q para estados terminais como zero; entao para cada passo
dos episddios é escolhido um valor de A segundo a politica de acgoes e o valor de Q é
atualizado através da equacao de Bellman. O processo se repete de maneira iterativa até

que um estado terminal seja alcancado.

Q(st,a1) = (1 — @)Q(s¢, ar) + (R + ymazaeaQ(Ses1, ar) (3.8)

Um aspecto importante do algoritmo Q-Learning é que ele converge a valores 6timos
de maneira independente ao comportamento do agente durante a etapa de coleta dos

dados. Ou seja, independente de como é feita a exploracao.



23

Q-learning (off-policy TD control) for estimating 7 ~ .,

Algorithm parameters: step size « € (0,1], small £ > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + a[R + ymax, Q(S,a) — Q(S, A)]
S« S5

until S is terminal

Figura 2: Algoritmo Q-Learning (SUTTON, 2017).

3.1.5 Exploration” contra "Exploitation”

Em primeiro lugar, faz-se necesséario desculpar-se com o leitor pois os dois termos
acima, amplamente utilizados na literatura especializada, tém a mesma traducao em lin-
gua portuguesa. Visto que o objetivo desta secao é coloca-los em uma posi¢ao antagonica,

faz-se o uso dos termos em lingua inglesa.

No aprendizado por reforco, o agente deve explorar o ambiente, de modo que possa
aprender com o maior nimero de acoes. No entanto, ao descobrir a acao que melhor
otimiza o comportamento do agente, é esperado que o agente tome esta agao. Esta é
a ideia por tras da escolha entre exploration, ou seja, explorar o ambiente para obter
mais referéncias sobre seu funcionamento e explotation, utilizar da melhor estratégia ja

encontrada para maximizar o resultado final .

O cenario ideal é aquele em que o agente explora as agoes possiveis de modo a obter
aquela que maximiza a recompensa e passa a utiliza-la de modo a obter o comportamento
6timo. No entanto ha alguns obstéaculos que dificultam isso, impossibilitando o agente
de atingir o melhor resultado, como a limitacao do periodo de treino ou a existéncia de
méximos locais na funcao de recompensa. Além disso, em casos nao deterministicos, nao
é possivel obter a acao que maximiza a recompensa, somente estimar a probabilidade

desta.

3.1.6 €-Greedy

Uma das estratégias adotadas para lidar com o problema de exploration e exploitation
é o algoritmo e-greedy. Este se refere a inserir um parametro € que define uma probabili-
dade em que o agente nao toma a acao de méximo valor, mas uma acgao aleatoria. Para

replicar o cenario ideal descrito acima, é pratica comum definir um decaimento de € até



24

um determinado €,,;, proximo de 0 e positivo.

O algoritmo determina € | 0 < € < 1, que decai ao longo do treino. Inicia-se o para-
metro € = €,,42, sendo €,,,, proximo de 1; utiliza-se uma variavel aleatoria de distribuicao
uniforme com valores entre (0,1) de modo que se o valor desta variavel for maior que e,
é tomada a agdo que maximiza o valor da fungao (Q em um determinado estado. Caso
o valor da varidvel aleatéria seja menor que €, a acao é escolhida aleatoriamente. Este
algoritmo tenta aumentar a etapa de exploration no inicio do algoritmo e, apos a aquisicao

de informagoes suficientes, prioriza-se aquelas que otimizam o comportamento desejado.

Matematicamente, pode-se representar a funcao e-greedy da seguinte formas:

argmaz(Q(sy,a’)) | o €A, serand(0,1) > €
a; = (3.9)

a aleatoria | a € A, caso contrario

Note que a técnica de decaimento de € nao é descrita pelo algoritmo, entretanto
comumente se usa um decaimento exponencial controlado por um parametro k |0 < k < 1,

com k muito préximo de 1, do tipo:

€mazx * ki» S€ €maz * kﬂ > €min

Emins caso contrario

Esta foi a abordagem escolhida para este trabalho, note porém que o modelo de

decaimento em si é mais um hiper-pardmetro do modelo de aprendizado.

3.2 Deep Q-Learning

O algoritmo Deep Q-Learning ou Deep Q-Network (DQN) funciona com uma jungao
de técnicas de Aprendizado Profundo e Aprendizado por Reforco, ou seja, trata-se de
uma técnica de Aprendizado por Refor¢co Profundo. O DQN funciona de modo similar ao
algoritmo QQ-Learning, no entanto a fungao () é aproximada por uma rede neural artificial
ao invés de uma tabela. Sendo mais indicada para casos onde o espago de estados e/ou o
espaco de agoes é maior, pois nestes casos o Q-Learning nao é viavel dada a quantidade de
memoria alocada necessaria para armazenar a tabela Q. Um campo onde o DQN é muito
utilizado é nos casos em que a entrada do modelo consiste de imagens, sendo utilizadas

redes neurais convolucionais para aproximar a fungao Q.



25

No algoritmo DQN, o responsével por decidir as agoes a serem tomadas ¢ uma rede
neural, que recebe como entrada o estado do ambiente. A funcao valor das agoes, neste
caso, ¢ dada em fun¢ao dos pesos € da rede neural e é treinada de modo iterativo conforme

a equacao de Bellman:

Q@(St: at) = R(St> at) +- mal’a’eAQe(StH, a') (3-11)

Apesar de sua indicagao para casos de maior complexidade, o algoritmo DQN é um
algoritmo bastante instavel e sua aplicacao é comumente associada a técnicas que buscam
melhorar a convergéncia e facilitar o treinamento. Algumas das principais técnicas ado-
tadas sao e-greedy para lidar com o tradeoff entre exploration e exploitation, utilizacao
de memoria de experiéncias (experience buffer), treinamento em mini-lotes (minibatch) e

rede-alvo (target-network).

Environment
Future State
| Reward

Action
State
,—‘
DQN-Agent

Target Network Value Network | |

. o a Update Network 5 a, ,
= ale— Parameters after n episodes | <2 o !
E s a3 _’__ﬂ_,———b s ) i
. - Update Network Parameters P . i
' Future Q-Values Future State State i
Optimizer Replay Memo '
] p Q-Values play ry !
i kJ '
] {State, i
' d [e———— Action, Reward ——— Action, i
! a 6 Reward,
] Future State} ||

Figura 3: Modelo de utilizagdo do DQN (Lang et al. 2020).

3.2.1 Memoria de experiéncias e treinamento em mini-lotes

A memoria de experiencias é uma técnica utilizada para melhorar a convergéncia em
aprendizado por reforco. Esta técnica utiliza um buffer de memoria onde sao armaze-
nados um numero fixos de tuplas de transicdo do tipo (s, as, 14, S¢+1, done) que contém
os seguintes elementos: s;, denota o estado atual; a;, denota a acao tomada; r;, denota

a recompensa associada ao par (s;,a;); s;11, denota o proximo estado, sendo uma fun-



26

¢ao de (s, ay) por se tratar de um processo de decisdo de Markov e done é uma variavel
booleana que denota se um estado é terminal ou nao. A armazenagem dos valores de
transi¢cao ocorre antes do treino e, na etapa de treinamento, estes valores sao atualizados
na memoria a cada passo. Quando esta técnica é utilizada sozinha, a cada passo a rede
é treinada com toda a extensao do buffer, entretanto é incomum vé-la sem a associa¢ao

com treinamento em mini-lotes.

O treinamento em mini-lotes se refere a técnica de utilizar uma amostragem aleatoria,
de tamanho fixo, do buffer de experiéncias ao treinar a rede neural. Comumente os mini-
lotes variam em tamanho de algumas dezenas até poucas centena em numero de elementos.
O valor padrao utilizado na literatura é de 32 experiéncias, entretanto |Stooke and Abbeel

[2018] encontrou beneficios em utilizar mini-lotes de até 512 elementos.

Os motivos da utilizagao dos mini-lotes melhorar o modelo ainda sao questionados na
academia, mas acredita-se que uma amostragem pequena insere mais ruido estatistico no

modelo, aumentando sua robustez, com a desvantagem de treinar mais lentamente.

3.2.2 Rede Alvo

A utilizacao da técnica de rede alvo tem o objetivo de aumentar a estabilizacao do
treinamento da rede neural. Esta técnica consiste em utilizar um coépia da rede neural
utilizada para calcular a parcela Qg(s;11,a’) da equagao de Bellman. Ou seja, a rede alvo
calcula os valores futuros de Q, que sao entao utilizados pela rede neural principal para
treinamento. Uma distin¢cao importante é o fato de que a rede alvo nao é treinada, seus
parametros sao atualizados com base na rede principal de maneira periddica, a cada n
episoddios com base no parametro 7 que define qual peso na média ponderada os valores
da rede de valor terao sobre a rede de alvo. A figura [4] demonstra o funcionamento de um

algoritmo DQN utilizando rede alvo.

3.3 Cinematica de rob6s manipuladores

A cinemética é o ramo da fisica que estuda o movimento dos corpos de forma a
caracteriza-los sem se preocupar em descrever a sua causa, como o efeito de forgas e
momentos. No estudo de robds manipuladores como o KUKA, a cineméatica caracteriza

o movimento das articulagoes do robd através de suas velocidades e posigoes.

A cinematica de robos manipuladores pode ser dividida em cinemética direta e cine-

matica inversa. A cinematica direta tem como objetivo obter parametros do efetuador



27

rob6 como velocidade e posicao das articulagoes em relagao aos sistema de coordenadas
da base. Ja na cinematica inversa a posicao do efetuador é conhecida e o objetivo é cal-
cular as posicoes das articulagoes de modo a permitir que o efetuador esteja na posicao

desejada.

O rob6 KUKA KR-16 conta com seis graus de liberdade, através de suas seis arti-
culagOes rotativas, representadas por A1-A6 na figura 3. As trés primeiras articulagoes
A1-A3 tem a funcao de posicionar o efetuador, enquanto as trés ultimas sao utilizadas

para realizar sua orientacao.

Figura 4: Representagao de modelo da cadeia cinematica do KUKA KR-16 segundo D-H
(PIOTROWSKI N; BARYLSKI A, 2014)

3.3.1 Parametros de Denavit-Hartenberg

Os parametros de Denavit-Hartenberg sao utilizados para descrever a cadeia cinema-
tica completa de um robd6. Estes pardmetros sao utilizados de forma a definir um elo,
ou seja, “‘um corpo rigido que define a relacao entre eixos de duas juntas vizinhas de um

manipulador” (CRAIG, 2012), e a sua relagdo com elos vizinhos.

O parametro (a) representa o comprimento do elo. O parametro « representa a
tor¢ao do elo. O parametro d representa o deslocamento do elo, ou distancia entre elos.
O parametro 6 representa o angulo entre juntas. A figura 3 mostra a relacao desses

parametros entre dois eixos i-1 e i.



28

Eixoi— 1 Eloi—1 /

Figura 5: Notagao de Denavit-Hartenberg (CRAIG, 2012)

O procedimento para obter a matriz de transformacao entre elos utilizando os para-

metros D-H é o seguinte:

Posicionar a origem do sistema de referéncia i no cruzamento entre a perpendicular
ai e o eixo da junta i. O eixo Z ¢é posicionado de modo a coincidir com o eixo da junta i.
O eixo X é definido como a direcao normal ao plano formado entre Z; e Z;1. O eixo Y,

por fim, é obtido a partir da aplicacao da regra da mao direita utilizando os eixos X e Y.

A matriz obtida utilizando os parametros D-H e o procedimento descrito anteriormente

¢ dada a seguir:

COS 81 —sm@z 0 [e7]
; sinf;cosa;_; cosb;cosa;_; —sina;_y —sinoy_1d;
Al = ) ] (3.12)
sinf;sino;_; cosf;sinq;_;  coso_g cos ov;_1d;
0 0 0 1

3.3.2 Modelo Cinematico do KUKA KR-16

Utilizando as medidas do rob6 KUKA obtidas do manual do fabricante e os parametros
D-H calculados na se¢ao anterior e mostrados na tabela 1 ¢ possivel calcular a matriz de
transformaciao de coordenadas através da cinematica direta. A matriz AS representa a
transformacao de coordenadas entre o sistema de coordenadas da base do robd e o sistema

de coordenadas do efetuador.

AS = ALAZAB AL AR AS (3.13)



i 0 dlmm] | ajmm] | o | in | Omas
1 q1 dy =675 | ap =260 | -90 | -185 | 185
21q-90 0 ap =680 | 0 |-155 | 35

3 q3 0 as =35 |[-90 | -130 | 154
4 q4 dy = 670 0 90 | -350 | 350
) s 0 0 -90 | -130 | 130
6 6 dg = 115 0 0 [-350| 350

Tabela 1: Parametros de Denavit-Hartenberg do rob6 KUKA KR-16

29



PARTE III

DETALHAMENTO DE PROJETO



31

4 REQUISITOS DE PROJETO

4.1 Requisitos

O objetivo deste trabalho é desenvolver uma ferramenta didatica para permitir a
aprendizagem ativa em técnicas de controle robotico com aprendizado por refor¢o. Para
tanto definiu-se que o escopo deste trabalho se limita ao desenvolvimento de uma estrutura
capaz de treinar o robd6 KUKA em ambiente virtual. Para alcangar este objetivo foram

definidos os seguintes requisitos de projeto:

A implementagao do algoritmo em robd KUKA real deve ser viavel sem que haja

alteracoes dos resultados obtidos por simulagao;

O robo deve ser capaz de capturar as bolas de ténis arremessadas contra ele com

uma taxa de sucesso superior a 95%;

O usuario devera poder testar diferentes parametros de treinamento sem editar o

programa;

Todo o codigo deve ser bem documentado e explicado para os futuros usuarios da

ferramenta;

O sistema deve funcionar em tempo real.

4.2 FEfetuador Final

Com o objetivo de capturar a bolinha, foi necessério desenvolver uma ferramenta a
ser fixada na ponta do brago robotico KR16. Dessa forma, projetou-se uma cesta, a
ser impressa em PLA por uma impressora 3D de filamento. Nesta secao apresenta-se a

documentacao de projeto da cesta, que é a tnica parte fisica do trabalho.



32

4.2.1 Fixacao

Segundo o manual de especificagoes do robd6 KUKA KR16-2, no tltimo elo existem
8 orificios com rosca métrica para parafuso M6, sendo assim modelou-se uma estrutura

capaz de ser fixada com estas condi¢oes. Entretanto dada a baixa carga sobre a peca

apenas 3 orificios serao utilizados.

19,5
26 H7
(6+1 tief/deep/profond) 6,2
1x30°
——
— z
©
M~
3]
¥ Yo
8 AL
& 81 3 ©|d
gl o o @
/ /7]
-

AN

1x30°

(S X&)

+
coom

M6 (5x) 7 tief/deep/profond

Figura 6: Posicionamento dos orificios de fixa¢ao do rob6. (KUKA KR16 Specification)

4.2.2 Geometria

A dimensao mais importante da cesta é o diametro da boca, essa dimensao esta
intimamente ligada com a dificuldade do problema final. Por esse motivo foi feita uma
cesta com dimensoes generosas, com 140mm de boca. Além disso, precisava-se de uma

altura que nao deixasse a bola escapar quicando.

Optou-se por fazer a cesta com orificios para facilitar a visualizagao da bola dentro

dela. Pode ser considerada uma opcao estética



33

Figura 7: Cesta modelada em 3D. (Fonte: Autores)

Para mais detalhes geométricos vide apéndice, 14 estd anexado em desenho técnico

detalhado da cesta coletora.

4.2.3 Representagao no ambiente virtual

A cesta no ambiente virtual é uma entidade apenas renderizada, nao sendo levada
em conta nas verificagoes de colisao. Visto que o ambiente aproxima os corpos para uma
versao convexa deles para calculo de colisao e uma cesta é por definicdo concava nao
pudemos utilizar o modelo .stl da cesta diretamente como objeto fisico. Para solucionar
este problema contornamos a cesta com 20 caixas de espessura desprezivel que aproximam
bem o cilindro principal da cesta e ainda um cilindro de espessura desprezivel utilizado

como tampa inferior.



34

(a) Modelo visual da cesta. (b) Modelo de colisao da cesta

Figura 8: Representagao da cesta no ambiente virtual.(Fonte: Autores)



35

5 AMBIENTE DE SIMULACAO

5.1 KUKA KR16-2

A representacao do robd no ambiente virtual se apresentou como um grande desafio
em si, em especial quando a dindmica do sistema, visto que a KUKA nao disponibiliza
modelos de distribuicao de massa e tampouco curvas de torque e redugoes em seus motores.
Por esses motivos o escopo do projeto foi limitado & etapa de planejamento de trajetoria

e nao a etapa de controle dindmico do sistema.

Figura 9: KUKA KR16-2 instalado na Escola Politécnica da USP (Fonte: Autores)

5.1.1 Geometria

A fim de simular corretamente as posicoes e colisoes do robd é preciso ter um modelo
tridimensional deste. A fabricante disponibiliza arquivos CAD .step e desenhos técnicos
detalhados da geometria do rob6 via pagina de suporte do cliente. Entretanto, optou-se

por utilizar os modelos disponiveis no repositorio KUKA experimental do projeto ROS,


https://github.com/ros-industrial/kuka_experimental

36

visto que as posicoes das juntas e seus limites cinematicos também se encontram deter-
minados no arquivo URDF (Arquivo Universal de descri¢ao de robd) nele disponibilizado.
Além disso, por se tratar de um projeto independente da fabricante, tomou-se o cuidado de
validar cada uma das dimensoes principais do modelo tomando como referéncia o manual

fornecido pela KUKA.

O ambiente Gazebo utiliza modelos diferentes para renderizagao e visualizacao, sendo
o primeiro um modelo geométrico detalhado no formato .dae e o segundo sendo um modelo
simplificado (frequentemente convexo) do primeiro em formato .stl. O MuJoCo, ambiente
escolhido para simulacao e renderizacao neste trabalho utiliza apenas um modelo para
ambos objetivos e em formato .stl, dessa forma foi-se necessario converter os arquivos

detalhados .dae para .stl, para tanto utilizamos o software CAD AutoDesk Inventor.

Em seguida pode-se observar tanto as informagdes retiradas do manual do KUKA

KR16 quanto os modelos tridimensionais encontrados.

Y
Carga suplementar * 670 Centro de gravidade da carga
158

2026

530 1081
1027 1611

Raio de interferéncia da flange de montagem

dimensdes: mm

Figura 10: Dimensoes principais e envelope de trabalho. (KUKA KR16 Specification -
adaptagao)



37

(a) Modelo da da fabricante (b) modelo do projeto ROS

Figura 11: Modelos 3D encontrados.(Fonte: Autores)

5.1.2 Cinematica

Visto que utilizamos o arquivo URDF como referéncia para o modelo do robd obti-
vemos simultaneamente os limites de cada junta de revolucao e ainda suas respectivas
velocidades méximas. Aqui novamente esses valores foram validados com as informacgoes

fornecidas pela fabricante.

Além disso, outra conversao de arquivos se faz necessaria aqui, o ambiente MuJoCo
¢ compativel com arquivos URDF, entretanto para ter acesso a todos os recursos que o
ambiente proporciona ¢é altamente recomendével representar o rob6 em um arquivo XML,
seguindo a estrutura que a documentagao da ferramenta chama de MJCF. Foi utilizado
um tradutor automaéatico, disponivel no repositéorio URDF2MJCEF| de Eric Heiden para

converter os arquivos.

Seguem abaixo as informacoes encontradas nos manuais:


https://github.com/eric-heiden/URDF2MJCF

38

A6
Eixos 1 a 3 eixos principais
Eixos 4 a 6 eixos do punho

Figura 12: Eixos de rotagao e diregoes de rota¢ao no movimento do robd. (KUKA KR16
Specification - adaptagao)

Eixo | Amplitude de movimento Velocidade
Al + 185° 156° /s
A2 +35° a-155° 156° /s
A3 +154° a-130° 156° /s
A4 + 350° 330° /s
A5 + 130° 330° /s
A6 + 350° 615° /s

Tabela 2: Limites cineméticos do robd6(KUKA KR16 Specification - adaptacao)

5.1.3 Dinamica

A fabricante nao fornece dados suficientes para a modelagem da dinamica do robo.
Apesar de termos as especificacoes de cada um dos motores nao héa detalhes sobre redugao
e controle digital na atuagao do robo. Dessa forma, este trabalho se propoe a modelar a

etapa de planejamento de trajetéria do robd, apenas.

Para que a transferéncia para o mundo real seja satisfatoria, basta que o controle de
velocidade e posicao implementado pela KUKA tenha um baixo sobressinal na posi¢ao
e um baixo tempo de acomodac¢ao na velocidade. Apesar de nao termos os parametros

de controle necessarios para avaliar essas métricas pode-se assumir essas hipoteses como



39

verdadeiras, dada a proposta de aplicacao de um robo6 industrial. Além disso, segundo as

especificagoes encontradas no manual o robd possui uma repetibilidade de +0.05mm

Modelagem dos Atuadores

Visto que nao temos disponiveis os parametros dinamicos do sistema foi necessario
modelar o sistema de forma simplificada. Em primeiro lugar foi definida uma densidade
qualquer uniforme para os corpos que compoem brago robdtico, ademais, estes foram
considerados macigos. Com esta simplificacao é possivel obter as matrizes de inércia

apenas com os modelos geométricos dos corpos.

Com o problema inercial resolvido, tem-se ainda o problema da modelagem dos mo-
tores, o MuJoCo possui apenas uma modelagem de atuagao sobre o sistema, entretanto
esta é genérica o suficiente para abarcar uma ampla gama de atuadores diferentes. Como
pode ser visto na documentacao do simulador, existem maneiras de ajustar os parametros
dessa modelagem para que diversos tipos de atuadores sejam construidos, alguns des-
tes possuem inclusive abstracoes, ou seja, atalhos em programacao para que sejam mais

amigaveis ao usuario.

Aqui utilizou-se uma das abstragoes disponiveis no MuJoCo, o servo de velocidade-
integral, apesar do nome. Neste atalho o tinico parametro modificavel é o coeficiente
proporcional K, do controlador. A fim de se obter um servo de posicao com velocidade
controlada utilizou-se o servo de velocidade-integral modificando-se a referéncia da velo-
cidade para 0 quando a posicao atinge a desejada. Vé-se abaixo um dos testes feitos com
essa modelagem, o eixo se encontrava em repouso na posicao 0; deseja-se leva-lo até a

posigao 2 rad com a velocidade méaxima do eixo (156°/s ~ 2.72rad/s).



Velocidade angular de referéncia do eixo Al

:—' 23
=
E
S
= 13
=1
& 1o
=
8 a3
2
ao
Posicao angular do eixo Al
0
E 13
E
[=]
"G L
W
'E a3
ao
Esforco de controle
ﬂ &
=
E 2
(=]
L=
Lo
g
-z
£
Ly
aod azs a3 ars 100 123 13d 175 200
Tempao (s)
(a) K, baixo
Velocidade angular de referéncia do eixo Al
:-' 23
=
Bz
g
= 13
4
F 10
=
B as
2
ao
Posicao angular do eixo Al
200
173
e 130
=
£ 1
'EI 100
el aTs
& o
fibrs
a0
Esforco de controle
E 4
e
g 3
L=
+
(=]
g -2
&
[N}
-
.00 [ie] a3 ars 100 133 13 173 200
Empao (s)
(b) K, alto

Figura 13: Comportamento do atuador(Fonte: Autores)

40



41

Encontrou-se um passo-a-passo de modelagem de robos, e por consequéncia seus atu-
adores, fornecido na documentacao do simulador. Este descrevia como os valores de
amortecimento e ganho deveriam ser traduzidos para o modelo a fim se atingir um estado
estatico e dinamico estavel. Além disso, ainda cita que quando nao hé informacoes sufici-
entes para se reproduzir os motores reais deve-se encontrar tais parametros por tentativa

€ erro.

No caso da modelagem com atuadores servos de velocidade integral o tinico de entrada
é a constante proporcional do controlador. Sendo assim, fixava-se todos os 5 primeiros
eixos e encontrava-se o parametro estével pra a junta A6. No passo seguinte repetia-se o
processo com 4 juntas fixas e encontrava-se o parametro para a junta A5. Este processo foi
repetido até que todos os parametros estivessem definidos e verificava-se a estabilidade do
robd. Note que para uma junta An a massa movida por cada atuador aumenta conforme
n diminui, isso faz com que o K, precise aumentar (dado que a frequéncia natural também
aumenta), portando ¢ importante sempre escolher o menor K, estavel em cada passo, a

fim de evitar que na junta Al tenha-se um K, muito elevado, o que leva a instabilidade.

Esta modelagem de atuagao nao é usual na comunidade de usuarios de mujoco, tam-
pouco nos modelos fornecidos de exemplo pela equipe de desenvolvedores e alguns motivos
ajudam a explicar tal situagdo. Primeiramente, esta funcionalidade é nova no ambiente,
tendo surgido em junho de 2022, por isso é esperado que tal recurso tenha uma documen-
tagao mais modesta e ainda baixo uso pela comunidade. Outro motivo, sobre o qual nem
se encontram relatos nos féruns relacionados, é que a estabilidade deste tipo de modela-
gem é limitada. Sendo que partindo-se da posicao inicial para qualquer outra utilizando
o método supracitado a simulagao se mantém estavel por todo o trajeto, entretanto, ao
se definir uma pose inicial diferente da usada para escolher os parametros K, a simulacao

se torna instavel.

5.2 O ambiente

A sala em que o robd esta instalado no Prédio da Engenharia Mecatronica da Escola
Politécnica da USP precisou ser reproduzida no ambiente virtual a fim de prever possiveis
interferéncias no envelope de trabalho do robé dado que nao héa gaiola de isolamento do
mesmo, sendo utilizadas cadeiras para cercar o perimetro. Além disso, para diminuir a
necessidade de aprendizado por transferéncia na passagem para o mundo real, é preciso
deixar o ambiente virtual o mais parecido possivel com o ambiente real. Com isto posto,

levantou-se as informagoes dimensionais da sala e propos-se uma disposicao ideal para a



realizacao dos experimentos.

&) &)

Figura 14: Planta baixa da sala, com a disposigao final dos elementos. (Fonte: Autores)

A circunferéncia tracejada menor se trata do envelope de trabalho do rob6 segundo

o manual (o manual desconsidera o tamanho do tltimo elo, como pode ser observado na

42



43

Figura . A circunferéncia tracejada maior representa o limite do envelope de trabalho
do robd levando em conta a cesta coletora acoplada ao efetuador final incluindo o tamanho
do ultimo elo. Note também a posicao do sistema global de coordenadas utilizado em todo

o projeto.

O modelo virtual da sala foi construido utilizando elementos geométricos bésicos,
sendo as paredes, teto e piso semi-planos e o centro de controle do robd uma caixa, as
excecoes sao as mesas e o robo em si, que foram modelados em 3D e importados para
o ambiente como um arquivo .stl capaz de representar sélidos. As descri¢oes detalhadas

dos parametros desses elementos pode ser encontradas no arquivo environment.xml

(a) Mesa real (b) Modelo 3D

Figura 15: Modelagem 3D das mesas(Fonte: Autores)

(a) visao frontal (b) visao lateral

Figura 16: Renderizagao 3D do ambiente de simulagao(Fonte: Autores)

Visto que o sensor utilizado é uma camera foi necessario também definir as fontes de

luz existentes. Estas, na sala original se tratam de lampadas fluorecentes, portanto fontes



44

extensas de luz, entretanto no ambiente utilizado neste trabalho estas lampadas foram
substituidos por fontes pontuais de luz. As luzes configuradas tem um eixo principal e
angulo de corte, onde a partir dele objetos nao sao mais iluminados, dessa forma, utilizou-
se uma fonte de luz a mais para iluminar adequadamente o teto; dado que as superficies

nao refletem luz, nao seria possivel enxergé-lo.

5.2.1 Camera simulada

O sensor escolhido para o projeto foi uma camera de profundidade, a Intel RealSense
Depth Camera D435, alguns parametros foram retirados do datasheet para representa-
la virtualmente. Em especial o campo de visdo, fov=>58° e a distancia inter-pupilar
ipd=50mm. Por se tratar de uma camera com propodsito técnico seu software permite
selecionar a taxa de atualizacao de quadros e resolucao, inclusive podendo ser diferentes
para os sensores RGB e o sensor de profundidade, este que possui uma taxa de atualizacao
maior. Observe que exite um equilibrio entre taxa de aquisicao e resolucao da imagem,
dado o limite na transferéncia de dados via USB-A 3.0. Neste trabalho assumimos reso-

lugoes de 600x600 e quadros sao atualizados em 60Hz para ambos sensores.

¥

(a) Sensor de cor (b) Sensor de profundidade

Figura 17: Visao da camera simulada.(Fonte: Autores)

A camera foi posicionada sobre o eixo x global 3,6 metros distante do centro da
base do robo, origem do sistema coordenado. na imagem abaixo é possivel verificar o

posicionamento e campo de visao da camera.



45

A

3

)

a.(Fonte: Autores

da camer

12N
2%

%
\

N

N

N

Figura 18: Campo de visao



46

6 VISAO COMPUTACIONAL

Como o sensor escolhido para captar os dados do sistema foi uma camera de profundi-
dade tornou-se imprescindivel o entendimento e a posterior implementagao de técnicas de
visao computacional frente aos desafios impostas pelo problema. Este capitulo se propoe
a detalhar as solugoes escolhidas e implementadas para os desafios encontrados durante o

desenvolvimento.

6.1 Reconhecimento da bola

O primeiro passo para saber a posi¢ao da bola é reconhece-la na imagem da camera,

para tanto utilizou-se alguma técnicas de visao computacional classica.

Primeiramente, faz-se um filtro de cor na imagem, a fim de diferencia-la do resto da
imagem. O espaco de cores RGB nao é conveniente no momento de se fazer um filtro desse
tipo, por isso converte-se a imagem para o espago HSV (matriz, saturagao e valor /brilho)
dessa forma escolhe-se um intervalo de verde (visto que é lancada uma bola de ténis) que
seré observado na imagem. Outros algoritmos também sao aplicados na imagem , com a
finalidade de reducao de ruido, uma suavizacao gaussiana e iteragoes de erosao e dilatacao.

Segue abaixo alguns exemplos retirados da documentacao da biblioteca OpenCV.



47

(a) Foto da cAmera simulada (b) Mascara-resultado do filtro de cor

Figura 19: Aplicacao do filtro de cor.(Fonte: Autores)

a) original €rosao c) dilatagao (d) Suavizagao

Original Averaging

Figura 20: Exemplos dos demais filtros aplicados.(OpenCV Docs)

O proximo passo é identificar um circulo e encontrar seu centro. Sendo assim executa-
se um filtro identificador de bordas, associado a um algoritmo capaz de gerar uma lista de
contornos. Dessa lista escolhe-se o menor contorno fechado. Dado o contorno, calcula-se

seu centro em pixels.

6.2 Odometria Visual

Tendo solucionado o desafio de se obter a coordenada da bolinha em pixels. Passa-se
agora para o desafio de encontrar a posicao da bola em coordenadas da camera e, em
seguida, coordenadas globais. J& que estamos utilizando uma camera 3D nao havera
necessidade de utilizar o raio do circulo encontrado em conjunto com a dimensao real da

bola para determinar uma solug¢ao tnica para o problema.



48

Em primeiro lugar, vale lembrar que estamos simulando uma camera 3D real, a camera
real ja conta um software/driver que ja conta com todos estes algoritmos implementados.
Entretanto, como este nao é o caso de uso deste projeto foi necessario implementa-los

novamente para que funcionem com a camera simulada.

A mjr_readPixels(), fornecida pela API no mujoco, devolve um buffer de profundi-
dade num formato normalizado, baseado na profundidade minima Z,,+, e maxima Zjopge
configurada para a camera. Para se obter a profundidade real d de um pixel (i, j) a partir

da profundidade normalizada = faz-se necessaria a seguinte conversao:

.o Zero
d(i, j) = e ; (6.1)
1 — (i, j) * 1——1’”0)
( j) ( Zlonge

Seguem abaixa equagao que representa a posigao no sistema coordenado global a partir

de um pixel (i,j) na imagem:

M =dgyem | (6.2
___ _1/d<l’j)_

Com esta equacao podemos obter a localizacao de qualquer ponto na imagem, a

imagem abaixo sao os pontos da Figura (19| projetados no espaco.



49

Figura 21: Proje¢ao dos pontos no espago.(Fonte: Autores)

6.2.1 Matrizes da camera e de transformacao

Para realizar os calculos de odometria visual é necessario obter a matriz intrinseca da
camera. Normalmente essa etapa é realizada com o auxilio de um padrao de calibracao
posicionado em locais diferentes do campo de visao da camera. Entretanto, como uti-
lizamos uma camera virtual foi necessario calcular a matriz a partir dos parametros da

camera.
Sendo, FOV, e FOV, os campos de visao nos eixos x e y da camera, respectivamente;
e H e W a altura e largura da imagem em pixels, respectivamente.

Calcula-se a distancia focal f, e fy:

w H

" (205 M rm(rzmy

360 360
Dado que nao ha distor¢oes de fabricacao pois a camera é , ¢, e C, sao simplesmente:

Cp=— c, == (6.4)

E com isso tem-se a matriz da caAmera K:



50

fo 0 G
K=1|0 f, ¢, (6.5)
0 0 1

Para se obter as coordenadas no sistema global de coordenadas sao necessérios ainda
as matrizes de rotagao e o vetor de translacao do sistema coordenado global para o da

camera. Com o ambiente descrito na na secao [5.2] nossa matriz R e vetor t sao:

R=[0 1 0 (6.6)

0.825
t=1 0.0 (6.7)
3.6

Para finalmente calcular a matriz de transformacao, define-se:

K 0

Kfr _ [3x3] [1x3] (68)
Oy 1|
Riss tiixs|

Rtfr _ [3x3] [1x3] (6.9)
0[1><3] 1

e assim tem-se a matriz de transformacao H:
H = Ky, - Rty, (6.10)

6.3 Rastreamento da bola - Filtro de Kalman

Dadas as perturbagoes no mundo real ou ainda os obstéculos no visao da camera, é
necessaria a construcao de algum algoritmo que permita estimar a posi¢cao da bola mesmo
quando esta nao esté visivel. Para resolver este problema utilizamos um filtro de Kalman,

que obedece as seguintes equagcoes:



51

De predicao:

x = Fx + Bu (6.11)
P = FPF' +Q (6.12)
De atualizagao:

K =PH (HPH' +R)! (6.13)

y=X— Hz (6.14)

x =x+ Ky (6.15)

P=(I-KH)P (6.16)

(6.17)

Define-se como o vetor de estados x:

(6.18)

Assumindo um modelo de aceleracao constante, define-se F' como a matriz de transicao

de estados, sendo:

dt (6.19)

" Ips



52

] 0 ]

L0 0d 00 = 0 0
2
0100d 0 0 2

2

0010 0 dt 0 %

F=l0000 1 0 0 d 0 (6.20)
0000 O0 1 0 0 dt
0000 0O 1 0 0
0000 0O 0O 1 0
000000 0 0 1

Define-se H, como sendo a mascara de medicoes:

1000000O0O0
H=1(010000000 (6.21)
001000000

A Matriz de covariancia de medida R, obtida por uma amostra aleatéria de 10.000

posicgoes diferentes da bola:

3.0457e — 03 —8.60465¢ — 04 1.2541e — 04
R = | -8.6046e — 04 5.4875e — 04  —3.1012¢ — 05 (6.22)
1.2541e — 04 —3.1012¢e — 05  1.0162e¢ — 04

Para o calculo de Q, define-se primeiramente o vetor 7:

[0.5 - di?]
0.5 - dt?
0.5 - dt?

dt

T = dt (6.23)

dt

e finalmente, assumindo var = 1:

Q=var-7-7t =777 (6.24)



53

Com o filtro de Kalman implementado o rastreamento da bolinha ficou muito mais
suave e a previsao da aceleracao muito mais precisa, também, isso foi extremamente
importante para ter-se uma avaliacao confidvel de quando a bola estd ou nao em queda
livre. Na imagem abaixo tem-se a trajetoria da bolinha avaliada com o filtro de kalman,
perceba que a bola passou por tras do brago robético, portanto estava fora do campo de

visao da camera e mesmo assim o rastreamento continua bem comportado.

Figura 22: Rastreamento da bola, com obstéculo no campo de visdo.(Fonte: Autores)

O pequeno calombo na rota em azul se refere ao fato de que a bola esta parcialmente
encoberta nesses ponto. Quando esta situacao se apresenta o centro do contorno na

maéscara de cor e o centro da bolinha sao divergentes.



54

7 MODELO DE APRENDIZADO POR REFORCO

Conforme descrito na se¢ao|3.1.1], o modelo do sistema pode ser descrito como processo
de decisao de Markov, ou seja, pode ser descrito em funcao de seu espago de estados, espaco
de agoes, fungao de transicao de estados e funcao de recompensa. Nesta se¢ao é explorada

a definicao destes elementos para o problema modelado.

7.1 Espaco de Estados

O espago de estados adotado consiste em um vetor s composto pelo valor angular
das articulagdes do robo, o vetor posi¢do da bola 75, = (ps, py.p-), € 0 vetor velocidade
da bola Vj, = (vg,vy,v,) € 0 vetor posicao da cesta 7. = (¢, Y, 2.). O valor angular das

articulacoes do robo obedece a um limite proprio conforme descrito na tabela 2.

Dz
by
Dz

Vg

Uy

q1

as
44
ds
de
T

Ye

Zc




55
7.2 Espaco de Acoes

O ambiente modelado é composto pelo robd, seu volume de trabalho e a bola arre-
messada. A ac¢ao tomada pelo rob6 consiste em mover suas articulagoes com o objetivo
de que a posigao da cesta montada em seu efetuador antecipe a trajetoria da bola e a bola
seja capturada. O controle do robo é feito através de sua velocidade. Considerando seis
articulacoes e adotando os valores 1, 0 e -1 para representar, respectivamente, rotacao
no sentido positivo, rotacao no sentido negativo e auséncia de rotacao, o niimero total de
acoes ¢ de 3% e o espago de agoes pode ser descrito como A = [1,0,—1]%. O espago de

acoes completo pode ser descrito pela matriz A:

(1 1 1 1 1 1]
1 1 1 1 1 0
11 1 1 1 -1
1 1 1 1 0 1
1 1 1 1 0 0
1 1 1 1 0 -1

U I T B )
1 1 1 1 -1 0
1 1 1 1 -1 -1
1 1 1 0 1 1

1 -1 -1 -1 -1 1
1 -1 -1 -1 -1 0

-1 -1 -1 -1 -1 -1

Cada linha da matriz A representa um vetor de acao A;. O resultado da agao pode

ser representado pelo vetor V:

V = kVinas 0 A; (7.3)

onde V., representa um vetor contendo a velocidade maxima de cada uma das articu-
lacoes, k representa um fator de velocidade, V., o A; representa o produto elemento-a-
elemento entre os vetores V.. e A; e V = [Vi, V5, V3, V), Vs, V] representa a velocidade

imposta as articulagoes.



56

7.3 Funcao de transicao de estados

Utilizando o vetor V definido na se¢ao anterior em funcao da acao e o intervalo de
tempo AT de cada passo da simulagao é possivel calcular os novos valores angulares
das articulagoes do robd. Deste modo a funcao de transicao de estados para um par

estado-agao (s, a) é dada por:

f(s,a) =s+ V,AT (7.4)

em que V, representa um vetor da forma:

7.4 Funcao de recompensa

Entende-se que fungoes de recompensa descontinuas tém maior dificuldade de con-
vergéncia, por isso optou-se por utilizar uma funcdo logaritmica de barreira p(x) para os

casos em que os limites de movimento sao ultrapassados, sendo p um valor positivo que

devera ser subtraido da recompensa.

p(z) = min (Pmaz, C - 10g(0,25(Tmaz — Tmin)?) — L0g((2 = Timin) (Tmaz — )))



o7

A penalidade maxima p,,, sera aplicada caso x nao esteja no intervalo [Z,in, Tmaz)-

Esta funcao é utilizada como penalidade nos casos em que o limite de aproximacao
com o chao é excedido ou no caso em que os limites de rotagao de uma ou maias juntas
sao excedidos. Os parametros T, € Tmq: delimitam a regiao em que o movimento é
permitido em cada caso, o pardmetro C é um parametro de curvatura, quanto maior for

o seu valor, mais suavizada serd a barreira.

A figura abaixo representa o comportamento da penalidade, para os parametros

Tmaz = —Tmin = 3, C = 0.025, prae = 1:

Penalidade de Barreira Continua

10

0.8

=
&h

Penalidade

=
.

0.2

00

Figura 23: Fungao Penalidade continua.(Fonte: Autores)

Outro parametro utilizado na funcao de recompensa foi a distancia euclidiana entre

o centro da cesta e a posicao da bola.

Foram também utilizados os angulos de Euler formados entre o sistema de coordenadas
da cesta e o eixo Z global, ou seja, trata-se de uma forma de garantir que a cesta fique

em posigao vertical.

A dltima parte da funcao de recompensa tem o objetivo de fazer com que a cesta se

aproxime da posigao desejada antes da bola. Para tanto foram utilizadas as projecoes dos



58

vetores em um plano, de modo a facilitar a analise. Primeiramente define-se os seguintes

pontos:

A = projecgao da posicao do alvo no plano xy
B = projecao da posicao da bola no plano xy

C = projecao da posicao da cesta no plano xy

Em seguida calcula-se os seguintes vetores:

lelml
[
Qo
|
QO w W

BA
[|BA|

£y
I

(7.10)
(7.11)
(7.12)

(7.13)

Calcula-se a projecao dos vetores de interesse na direcao bola-alvo e, a partir disso,

calcula-se a fungao recompensa r:

a=CA-i
b=BC-i
r=2(a—0b)

7.5 Critérios de Parada

(7.14)
(7.15)
(7.16)

O treinamento do agente conta com diferentes critérios de parada. Esses critérios sao

utilizados pois os algoritmos adotados necessitam a simulagao de episédios completos.

7.5.1 Limite de tempo alcancado

O primeiro critério e parada ocorre quando o é alcancado o limite de tempo maximo

da simulacdo. Esse limite foi definido como T = 6 segundos. E importante que este

parametro seja determinado de maneira que o robo possa alcancar a posicao desejada.



59

7.5.2 Colisao do robd com o chao

De modo a garantir que a cesta nao colida com o chao foi estabelecido uma altura
minima H = 20 cm entre o centro de massa da cesta e o chao. O valor de H é hiper-
dimensionado por questao de seguranca, tal medida foi adotada considerando que o rob6
¢é capaz de capturar a bola antes que ela chegue ao chao. O caso em que essa distancia
minima nao é respeitada consiste em um estado terminal que, quando alcancado resulta

em punigao para o robo.

7.5.3 Extrapolacao dos limites de rotagao das articulagoes

Conforme mostrado na tabela 2, as articulagoes do rob6 KUKA KR-16 apresentam
um limite angular. Caso qualquer uma das seis articulagoes exceda o limite angular
estabelecido, em qualquer sentido de rotagao, este estado terminal é alcancado e o robo é

punido como demonstrado na fung¢ao recompensa.

7.5.4 O robo6 captura a bola dentro da cesta

Este critério de parada caracteriza o estado terminal em que houve sucesso, o robd
foi capaz de atingir a posicao desejada. A posicao desejada é definida como o ponto da
trajetoria da bola contido no plano em que h = 50 cm, onde h denota a altura da bola
em relacao ao chao. Esta definicao foi adotada pois permite a generalizacao do ponto
desejado para diferentes trajetorias e garante que a bola caia dentro da cesta. Este estado

é recompensado na fun¢ao de recompensa.

7.5.5 Colisao da bola com o chao

O tltimo estado terminal consiste na colisao da bola com o chao, indicando que o

robo falhou na tarefa de capturar a bola.



PARTE IV

RESULTADOS



61

8 A FERRAMENTA

A construgao da ferramenta com o objetivo de ser facil de usar foi uma preocupagao
constante durante o desenvolvimento, dessa forma, explicita-se aqui a organizacao do

codigo.

8.1 Parametrizacao

Como citado anteriormente o DQN tem uma natureza instével, por esse motivo ele
é utilizado em conjuncao com outras técnicas de modo a aumentar sua estabilidade e
chance de convergéncia. Tal fato acaba por gerar uma quantidade muito grande de hiper
parametros que precisam ser setados ao inicio do treinamento. Por fim, para facilitar
a experiéncia do usuario com a ferramenta organizou-se todos os hiper-parametros do

c6digo em um arquivo de configuragao params.py, que pode ser visualizado abaixo:

VALID_PARAMS = ("env_path","image_res","fps","cam_R","cam_t",
"num_episodes","max_sim_time","z_height","velocity_factor",
"floor_collision_threshold","render","plot", 'gamma',"epsilon",
"epsilon_max","epsilon_min","epsilon_decay","tau",
'learning_rate',"memory_size", 'batch_size',"update_gap",

"plot_interval")

params = {
# Environment parameters
#Enviroment description filepath

"env_path": "./sim_env/environment.xml",

# Camera parameters

# Frame rate



"fps": 60,
# Image resolution
"image_res": (600, 600), # (width, height)
#must be square
#T0DO: make this work with non-square images
# Camera rotation matriz
"cam_R": [[0.0, 0.0, -1.0],
(0.0, 1.0, 0.0],
[-1.0, 0.0, 0.011,
# Camera translation vector
"cam_t": [[0.825],
[0.0],
[3.61],

# Simulation parameters
# Maxzimum simulation time
"max_sim_time": 6,
# Velocity limit for the arm, factor of the mazimum velocity

"velocity_factor": 1.0,

# DYN parameters
# Gamma discount factor
"gamma": 0.99,
# Learning rate
"learning_rate": 0.0001,
# Number of episodes to Tun

"num_episodes": 700_000,

#Replay Memory
#Replay memory size
"memory_size": 1_000_000,
#Batch size

"batch_size": 25000,

#Epstilon Greedy

62



63

#[maz,miz, decay] epstilon wvalues
"epsilon": [1.0, 0.03, 0.999],
#0R another way to set epsilon:
# "epstlon_maz": 1.0,
# "epsilon_min": 0.03,
# "epsilon_decay”: 0.999,

#The first i1s prioritised tf both are set

#Target and Policy metwork method
#Updates target network every update_gap episodes
"update_gap": 100,
#Soft update method
"tau": 1, #use 1.0 for hard update

# Reward parameters
# Height of the basket to aim for when catching the ball
"z_height": 0.5,
# Threshold for the floor collistion penalty
"floor_collision_threshold": 0.2,

# Visualisation parameters
# Render the simulation
#(slows down the simulation way too much)
"render": True,
# Live plot of the rewards
"plot": True,
#Live plot interval

"plot_interval": 10,

8.2 Execucao

A execugao do programa também é simplificada, via linha de comando basta utilizar:

Para treinar:



64
python3 main.py train
Para avaliar um modelo treinado:

python3d main.py eval -m "model.pth"

8.3 Visualizacao

Com o parametro render configurado é possivel assistir ao rob6é aprendendo.

Training...

2.5

—5.0

—7.5

-10.0 4

-12.5 1

Terminal Reward

—15.0 1

-17.5 4

—=20.0 4

T T T T T T T T
0 2 4 6 8 10 12 14

pos: (0.13,-0.39,1.57) acc_z: -10.07

Figura 24: Janela de visualizagao do treinamento. (Fonte: Autores)

Com o parametro plot configurado é possivel ver a evolugao do treinamento ao vivo:



65

Training...

—10 A

=12 4

MIRN

-16 4

—-18 4

T T
80 100 120

o+
;¥
o
o+
o
[}
[=]

$Q =

Figura 25: Plotagem ao vivo das recompensas terminais. (Fonte: Autores)

8.4 Orientacao a Objetos

Houve a preocupacao em modularizar toda a implementagao de modo a facilitar que
os futuros alunos modifiquem as algoritmos como preferirem. Para tanto foram utilizadas
estruturas de classes com interagoes e bem definidas entre si. Ademais, foram também
utilizadas type-hints para facilitar o entendimento sobre as entradas dos métodos contru-

tores.



66

9 SOLUCOES DESENVOLVIDAS

Infelizmente este trabalho nao conseguiu encontrar os hiper-parametros que fizessem
o modelo convergir para uma solucao, discussoes mais aprofundadas sobre isso podem ser

encontradas na secao de conclusoes.



PARTE V

CONCLUSOES



68

A utilizacao de um modelo discreto para o espaco de agoes permitiu a implementacao
do algoritmo DQN. No entanto, a complexidade do problema ao utilizar um espaco de
acoes de tamanho 729 junto com a instabilidade propria do algoritmo DQN dificultou
a convergéncia. Com o intuito de garantir a convergéncia podem ser utilizadas outras
técnicas de aprendizado por refor¢co que lidam com modelos nao discretos como é o caso
de algoritmos do tipo ator-critico. Outro problema encontrado no treino é a grande
quantidade de tempo e capacidade computacional demandados. Uma forma de lidar com
isso é adotar simplificagoes para o modelo ou utilizar uma arquitetura de treino com

miultiplos agentes.

Fazer o ambiente virtual de simulacao foi um verdadeiro desafio, varias pegas desco-
nexas e mal documentadas apareceram pelo caminho. Entretanto, pode-se dizer que a
criacao do ambiente virtual foi um sucesso; a comecar por ter conseguido inserir o robo
dentro reproducao da sala real, em seguida, fomos capazes de criar um servo de velocidade
no robo, langar a bola de lugares diferentes e em condigoes diferentes programaticamente,
visualizar tudo isso com uma camera 3D simulada. Além de tudo isso, um dos integrantes
do grupo colaborou com o desenvolvimento de uma funcao da biblioteca em python que
estrutura a renderizacao do ambiente, visto que ela era necessaria para o projeto e ainda

nao havia sido implementada(a colaboragao foi aceita pelos criadores).

Em retrospecto, observando as vérias pecas desconexas e sem documentagao encon-
tradas, nao ha resultado mais bem sucedido que o atingido por este trabalho. As pecas
foram encaixadas, de forma coesa e funcional, com um programa bem estruturado e bem
documentado. Claro que ainda hé espaco para melhorias, a cAmera simulada s6 consegue
obter a profundidade correta de imagens quadradas, por exemplo. E isso torna o cenario
futuro ainda mais animador, este projeto nasceu com o objetivo de criar um ambiente
capaz de ensinar, ensinar um robd, e ensinar alunos, mas nunca se poderia o quanto ele

ensinou seus autores e ainda ensinara seus futuros colaboradores.



69

REFERENCIAS BIBLIOGRAFICAS

M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Pe-
tron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder,

L. Weng, and W. Zaremba. Learning dexterous in-hand manipulation.

P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and
W. Zaremba. Transfer from simulation to real world through learning deep inverse
dynamics model. 10 2016.

H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. G. Agia, and G. Nejat. A sim-to-real pipeline
for deep reinforcement learning for autonomous robot navigation in cluttered rough
terrain. IEEE Robotics and Automation Letters, 6:6569-6576, 10 2021.

A. Hundt, B. Killeen, N. Greene, H. Wu, H. Kwon, C. Paxton, and G. D. Hager. ’good
robot!”: Efficient reinforcement learning for multi-step visual tasks with sim to real
transfer. IEEE Robotics and Automation Letters, 5:6724-6731, 10 2020.

R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe, K. Bousmalis, and F. Nori.
Self-supervised sim-to-real adaptation for visual robotic manipulation. Proceedings -

IEEFE International Conference on Robotics and Automation, pages 2718-2724, 5 2020.

D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly,
M. Kalakrishnan, V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep reinforcement

learning for vision-based robotic manipulation. 6 2018.

P. Kormushev, S. Calinon, and D. G. Caldwell. Reinforcement learning in robotics: Ap-

plications and real-world challenges. Robotics, 2(3):122-148, 2013.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wi-

erstra. Continuous control with deep reinforcement learning. 2015.

J. Luo, O. Sushkov*, R. Pevceviciute®, W. Lian, C. Su, M. Vecerik, N. Ye, S. Schaal,
and J. Scholz. Robust multi-modal policies for industrial assembly via reinforcement

learning and demonstrations: A large-scale study. 3 2021.



70

A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra. Benchmarking

reinforcement learning algorithms on real-world robots. 9 2018.

D. J. Mankowitz, N. Levine, R. Jeong, A. Abdolmaleki, T. Springenberg, Y. Shi, J. Kay,
T. Mann, T. Hester, and M. R. Deepmind. Robust reinforcement learning for continuous

control with model misspecification. 6 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ri-

edmiller. Playing atari with deep reinforcement learning.

OpenAl, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. We-
linder, L. Weng, Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a
robot hand. 10 2019.

X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. Proceedings - IEEE International Conference on
Robotics and Automation, pages 3803-3810, 10 2017.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients.
Neural Networks, 21, 5 2008.

D. Schwab, T. Springenberg, M. F. Martins, T. Lampe, M. Neunert, A. Abdolmaleki,
T. Hertweck, R. Hafner, F. Nori, and M. Riedmiller. Simultaneously learning vision

and feature-based control policies for real-world ball-in-a-cup.

H. Shen, J. Yosinski, P. Kormushev, D. G. Caldwell, and H. Lipson. Learning fast quadru-
ped robot gaits with the rl power spline parameterization. Cybernetics and Information

Technologies, 12:66-75, 2012.

A. Stooke and P. Abbeel. Accelerated methods for deep reinforcement learning. 2018.
doi: 10.48550/ARXIV.1803.02811. URL https://arxiv.org/abs/1803.02811.

M. Vecerik, J.-B. R. Deepmind, O. S. Deepmind, D. B. Deepmind, R. P. Deepmind, T. R.
Deepmind, C. S. Deepmind, R. H. Deepmind, and J. S. Deepmind. S3k: Self-supervised

semantic keypoints for robotic manipulation via multi-view consistency. 9 2020.

I. Zamalloa, R. Kojcev, A. Hernandez, I. Muguruza, L. Usategui, A. Bilbao, and V. Mayo-

ral. Dissecting robotics - historical overview and future perspectives. 04 2017.


https://arxiv.org/abs/1803.02811

71

W. Zhu, X. Guo, D. Owaki, K. Kutsuzawa, and M. Hayashibe. A survey of sim-to-
real transfer techniques applied to reinforcement learning for bioinspired robots. I[FEE

Transactions on Neural Networks and Learning Systems, pages 1-16, 9 2021.



PARTE VI

APENDICES



9.1

Desenho técnico da cesta

v

DETALHE A
ESCALA1/2

@6.00 F10
6 4}
©
g~< O
J

R6.00
R31.00

P
4
=
o
T
=
e
G}
E G
o -
S <
Q ~
S —
(18]
n &
g F<ig
~
o~
o
[
—
i
=
—
~l

APROVADO

73



74

9.2 Repositéorio no GitHub

Os codigos por este trabalho desenvolvidos estao disponivel no repositério no GitHub

em:

https://github.com/LuanGBR/Kuka_RL_Control


https://github.com/LuanGBR/Kuka_RL_Control

